Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Involvement of p53-dependent apoptosis in radiation teratogenesis and in the radioadaptive response in the late organogenesis of mice Wang BJ Radiat Res 2001[Mar]; 42 (1): 1-10The irradiation of fetuses at the late period of organogenesis has been known to induce a dramatic increase in malformations. The mechanisms involved, however, have remained unclear for a long time. Using the mouse limb bud system, we first found that radiation-induced apoptosis is involved in the malformation, namely, radiation-induced apoptosis in the predigital regions of embryonic limb buds is responsible for digital defects in mice. An examination of embryonic C57BL/6J mice with different p53 (trp53) status enabled us to further find that susceptibility to radiation-induced apoptosis in the predigital regions and digital defects depend on both the p53 status and the radiation dose; p53 wild-type mice appeared to be the most sensitive, while p53 knockout mice were the most resistant. These results indicate that p53-dependent apoptosis mediates radiation-induced digital defects in the later organogenesis period. The existence of a radioadaptive response in embryonic mice, which has not been reported so far, was found by irradiating embryos with either 5 cGy or 30 cGy on embryonic day 11 prior to a challenging irradiation at 3 Gy on embryonic day 12. p53-heterozygous embryos did not show the radioadaptive response, indicating the involvement of p53 in the radioadaptive response in embryogenesis.|Adaptation, Physiological/*physiology[MESH]|Animals[MESH]|Apoptosis/*physiology[MESH]|Embryo, Mammalian/physiology[MESH]|Embryonic and Fetal Development[MESH]|Mice/*embryology[MESH]|Neoplasms, Radiation-Induced/*physiopathology[MESH]|Tumor Suppressor Protein p53/*physiology[MESH] |