Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll The cardiac ryanodine receptor (calcium release channel): emerging role in heart failure and arrhythmia pathogenesis Scoote M; Williams AJCardiovasc Res 2002[Dec]; 56 (3): 359-72The cardiac sarcoplasmic reticulum calcium release channel, commonly referred to as the ryanodine receptor, is a key component in cardiac excitation-contraction coupling, where it is responsible for the release of calcium from the sarcoplasmic reticulum. As our knowledge of the ryanodine receptor has advanced an appreciation that this key E-C coupling component may have a role in the pathogenesis of human cardiac disease has emerged. Heart failure and arrhythmia generation are both pathophysiological states that can result from deranged excitation-contraction coupling. Evidence is now emerging that hyperphosphorylation of the cardiac ryanodine receptor is an important event in chronic heart failure, contributing to impaired contraction and the generation of triggered ventricular arrhythmias. Furthermore the therapeutic benefits of beta blockers in heart failure appear to be partly explained through a reversal of this phenomenon. Two rare inherited arrhythmogenic conditions, which can cause sudden death in children, have also been shown to result from mutations in the cardiac ryanodine receptor. These conditions, catecholaminergic polymorphic ventricular tachycardia and arrhythmogenic right ventricular cardiomyopathy (subtype 2), further implicate the ryanodine receptor as a potentially arrhythmogenic substrate and suggest that this channel may offer a new therapeutic target in the treatment of both cardiac arrhythmias and heart failure.|Arrhythmias, Cardiac/*physiopathology[MESH]|Calcium/physiology[MESH]|Child[MESH]|Death, Sudden, Cardiac[MESH]|Heart Failure/*physiopathology[MESH]|Humans[MESH]|Mutation[MESH]|Myocardial Contraction[MESH]|Ryanodine Receptor Calcium Release Channel/genetics/*physiology[MESH] |