Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Biomechanical behavior of the temporomandibular joint disc Tanaka E; van Eijden TCrit Rev Oral Biol Med 2003[]; 14 (2): 138-50The temporomandibular joint (TMJ) disc consists mainly of collagen fibers and proteoglycans constrained in the interstices of the collagen fiber mesh. This construction results in a viscoelastic response of the disc to loading and enables the disc to play an important role as a stress absorber during function. The viscoelastic properties depend on the direction (tension, compression, and shear) and the type of the applied loading (static and dynamic). The compressive elastic modulus of the disc is smaller than its tensile one because the elasticity of the disc is more dependent on the collagen fibers than on the proteoglycans. When dynamic loading occurs, the disc is likely to behave less stiffly than under static loading because of the difference of fluid flow through and out of the disc during loading. In addition, the mechanical properties change as a result of various intrinsic and extrinsic factors in life such as aging, trauma, and pathology. Information about the viscoelastic behavior of the disc is required for its function to be understood and, for instance, for a suitable TMJ replacement device to be constructed. In this review, the biomechanical behavior of the disc in response to different loading conditions is discussed.|Adaptation, Physiological[MESH]|Biomechanical Phenomena[MESH]|Compressive Strength[MESH]|Dental Stress Analysis[MESH]|Elasticity[MESH]|Fibrillar Collagens[MESH]|Finite Element Analysis[MESH]|Humans[MESH]|Proteoglycans[MESH]|Shear Strength[MESH]|Stress, Mechanical[MESH]|Temporomandibular Joint Disc/chemistry/*physiology[MESH]|Tensile Strength[MESH]|Viscosity[MESH] |