Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) Diana MA; Marty ABr J Pharmacol 2004[May]; 142 (1): 9-19Depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE) are two related forms of short-term synaptic plasticity of GABAergic and glutamatergic transmission, respectively. They are induced by calcium concentration increases in postsynaptic cells and are mediated by the release of a retrograde messenger, which reversibly inhibits afferent synapses via presynaptic mechanisms. We review here: 1. The evidence accumulated during the 1990s that has led to the conclusion that DSI/DSE rely on retrograde signaling. 2. The more recent research that has led to the identification of endocannabinoids as the retrograde messengers responsible for DSI/DSE. 3. The possible mechanisms by which presynaptic type 1 cannabinoid receptors reduce synaptic efficacy during DSI/DSE. 4. The possible modes of induction of DSI/DSE by physiological activity patterns, and the partially conflicting evaluations of the calcium concentration increases required for cannabinoid synthesis. 5. Finally, the relation between DSI/DSE and other forms of long- and short-term synaptic inhibition, which were more recently associated with the production of endocannabinoids by postsynaptic cells. We conclude that recent studies on DSI/DSE have uncovered a specific and original mode of action for endocannabinoids in the brain, and that they have opened new avenues to understand the role of retrograde signaling in central synapses.|*Endocannabinoids[MESH]|Animals[MESH]|Cannabinoid Receptor Modulators/*metabolism/pharmacology[MESH]|Excitatory Postsynaptic Potentials/drug effects/physiology[MESH]|Humans[MESH]|Neural Inhibition/drug effects/*physiology[MESH]|Neuronal Plasticity/drug effects/*physiology[MESH]|Synapses/drug effects/*metabolism[MESH]|Time Factors[MESH] |