Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Axotrophin and leukaemia inhibitory factor (LIF) in transplantation tolerance Metcalfe SMPhilos Trans R Soc Lond B Biol Sci 2005[Sep]; 360 (1461): 1687-94Immune self-tolerance is controlled by a subset of T lymphocytes that are regulatory (Treg) and epigenetically programmed to suppress auto-reactive immune effector cells in vivo. By extrapolation, donor-specific transplantation tolerance might be controlled by donor-specific Treg that have acquired the appropriate epigenetic program for tolerance. Although such tolerance has yet to be achieved in man, proof of concept comes from mouse models where regulatory transplantation tolerance can be induced within the complex micro-environment of the spleen or draining lymph node. By studying whole spleen cell populations in a murine model of transplantation tolerance we have incorporated a complexity of environmental factors when looking for specific features that characterize tolerance versus aggression. This approach has revealed unexpected patterns of gene activity in tolerance and most notably that a novel stem cell gene, axotrophin, regulates T lymphocyte responsiveness both in terms of proliferation and in release of leukaemia inhibitory factor (LIF). Since LIF is a regulator of stem cells in addition to being a key neuropoietic cytokine, these preliminary results linking both axotrophin and LIF to transplantation tolerance lead us to propose that regulatory pathways encoded during the epigenetic development of Treg cells are related to pathways that regulate fate determination of stem cells.|*Models, Immunological[MESH]|Cell Differentiation/immunology[MESH]|Cytoskeleton/immunology[MESH]|Epigenesis, Genetic/*immunology[MESH]|Humans[MESH]|Interleukin-6/*immunology[MESH]|Leukemia Inhibitory Factor[MESH]|Stem Cells/immunology[MESH]|T-Lymphocytes, Regulatory/*immunology[MESH]|Transplantation Tolerance/*immunology[MESH] |