Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Bench-to-bedside review: adjuncts to mechanical ventilation in patients with acute lung injury Rouby JJ; Lu QCrit Care 2005[Oct]; 9 (5): 465-71Mechanical ventilation is indispensable for the survival of patients with acute lung injury and acute respiratory distress syndrome. However, excessive tidal volumes and inadequate lung recruitment may contribute to mortality by causing ventilator-induced lung injury. This bench-to-bedside review presents the scientific rationale for using adjuncts to mechanical ventilation aimed at optimizing lung recruitment and preventing the deleterious consequences of reduced tidal volume. To enhance CO2 elimination when tidal volume is reduced, the following are possible: first, ventilator respiratory frequency can be increased without necessarily generating intrinsic positive end-expiratory pressure; second, instrumental dead space can be reduced by replacing the heat and moisture exchanger with a conventional humidifier; and third, expiratory washout can be used for replacing the CO2-laden gas present at end expiration in the instrumental dead space by a fresh gas (this method is still experimental). For optimizing lung recruitment and preventing lung derecruitment there are the following possibilities: first, recruitment manoeuvres may be performed in the most hypoxaemic patients before implementing the preset positive end-expiratory pressure or after episodes of accidental lung derecruitment; second, the patient can be turned to the prone position; third, closed-circuit endotracheal suctioning is to be preferred to open endotracheal suctioning.|Bronchi/metabolism[MESH]|Carbon Dioxide/metabolism[MESH]|Humans[MESH]|Inhalation[MESH]|Lung/*physiopathology[MESH]|Positive-Pressure Respiration[MESH]|Prone Position[MESH]|Respiration, Artificial/adverse effects/*methods[MESH]|Respiratory Dead Space[MESH]|Respiratory Distress Syndrome/metabolism/physiopathology/*therapy[MESH]|Suction/methods[MESH]|Time Factors[MESH]|Trachea/metabolism[MESH]|Ventilators, Mechanical[MESH] |