Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction Cooper G 4thAm J Physiol Heart Circ Physiol 2006[Sep]; 291 (3): H1003-14The cytoskeleton as classically defined for eukaryotic cells consists of three systems of protein filaments: the microtubules, the intermediate filaments, and the microfilaments. In mature striated muscle such as the heart of the adult mammal, these three types of cytoskeletal filaments are superimposed spatially on the myofilaments, a specialized system of contractile protein filaments. Each of these systems of protein filaments has the potential to respond in an adaptive or maladaptive manner during load-induced hypertrophic cardiac growth. However, the extent to which such hypertrophy is compensatory is also critically dependent on the type of hemodynamic overload that serves as the hypertrophic stimulus. Thus cardiac hypertrophy is not intrinsically maladaptive; rather, it is the nature of the inducing load rather than hypertrophy itself that is responsible, through effects on structural and/or regulatory proteins, for the frequent deterioration of initially compensatory hypertrophy into the congestive heart failure state. As one example reviewed here of this load specificity of maladaptation, increased microtubule network density is a persistent feature of severely pressure-overloaded, hypertrophied, and failing myocardium that imposes a primarily viscous load on active myofilaments during contraction.|Actin Cytoskeleton/physiology/ultrastructure[MESH]|Animals[MESH]|Biomechanical Phenomena[MESH]|Cytoskeleton/*physiology/ultrastructure[MESH]|Heart Diseases/physiopathology[MESH]|Heart/*physiopathology[MESH]|Humans[MESH]|Hypertrophy[MESH]|Microtubules/*physiology/ultrastructure[MESH]|Myocardial Contraction/*physiology[MESH]|Myocardium/*pathology[MESH] |