Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Cross-talk between arterioles and tubules in the kidney Ren Y; Garvin JL; Liu R; Carretero OAPediatr Nephrol 2009[Jan]; 24 (1): 31-5In hypertension the pressure natriuresis set point is shifted to a higher pressure due to an increase in both renal vascular resistance and sodium (Na) reabsorption. The afferent arterioles (Af-Arts) and efferent arterioles (Ef-Arts) account for most renal vascular resistance; they control glomerular filtration rate (GFR) and peritubular pressure, and, consequently, renal function. Af-Art and Ef-Art resistance is regulated by factors similar to those in other arterioles and also by tubuloglomerular feedback (TGF). TGF operates via the macula densa, which senses increases in sodium chloride (NaCl) and sends a signal that constricts the Af-Art and dilates the Ef-Art. In the outer renal cortex, the connecting tubule (CNT) returns to the glomerular hilus and contacts the Af-Art. This morphology is compatible with cross-talk between the CNT and Af-Art, so-called connecting tubule glomerular feedback (CTGF). Our studies show that increasing NaCl delivery to the CNT results in Af-Art dilatation that can be blocked by inhibitors of Na transport. We believe cross-talk between the CNT and Af-Art is a novel mechanism that may contribute to regulation of renal blood flow and GFR.|Arterioles/*physiology[MESH]|Feedback[MESH]|Humans[MESH]|Kidney Glomerulus/*blood supply/physiology[MESH]|Kidney Tubules/*physiology[MESH]|Microcirculation/physiology[MESH]|Signal Transduction[MESH] |