Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
l�ll Enhancing cardiovascular dynamics by inhibition of thrombospondin-1/CD47 signaling Isenberg JS; Frazier WA; Krishna MC; Wink DA; Roberts DDCurr Drug Targets 2008[Oct]; 9 (10): 833-41Activation of soluble guanylate cyclase by nitric oxide (NO) controls signaling pathways that play critical roles in normal vascular physiology and in the pathogenesis of cardiovascular disease. We have identified the secreted protein thrombospondin-1 as a key regulator of NO signaling. Thrombospondin-1 limits the angiogenic activity of NO in endothelial cells, its vasodilator activity in vascular smooth muscle, and its antithrombotic activity in platelets. Loss of either thrombospondin-1 or its receptor CD47 in transgenic mice results in hyperdynamic responses to NO and reveals the importance of this pathway in normal physiology. Thrombospondin-1 and CD47 null mice show improved abilities to respond to ischemic stress, suggesting that therapeutic targeting of this pathway could benefit patients with a variety of ischemic conditions. We review the preclinical development of therapeutics targeting thrombospondin-1 or CD47 for improving survival of fixed ischemia, ischemia due to aging and peripheral vascular disease, and skin grafting.|Animals[MESH]|CD47 Antigen/genetics/*metabolism/physiology[MESH]|Cardiovascular Diseases/genetics/*metabolism/*physiopathology[MESH]|Humans[MESH]|Muscle, Smooth, Vascular/metabolism/physiopathology[MESH]|Nitric Oxide/antagonists & inhibitors/physiology[MESH]|Signal Transduction/genetics/*physiology[MESH]|Thrombospondin 1/*antagonists & inhibitors/genetics/*physiology[MESH] |