Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
l�ll Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives Homann VV; Edwards KJ; Webb EA; Butler ABiometals 2009[Aug]; 22 (4): 565-71Siderophores are low molecular weight, high-affinity iron(III) ligands, produced by bacteria to solubilize and promote iron uptake under low iron conditions. Two prominent structural features characterize the majority of the marine siderophores discovered so far: (1) a predominance of suites of amphiphilic siderophores composed of an iron(III)-binding headgroup that is appended by one or two of a series of fatty acids and (2) a prevalence of siderophores that contain alpha-hydroxycarboxylic acid moieties (e.g., beta-hydroxyaspartic acid or citric acid) which are photoreactive when coordinated to Fe(III). Variation of the fatty acid chain length affects the relative amphiphilicity within a suite of siderophores. Catecholate sulfonation is another structural variation that would affect the hydrophilicity of a siderophore. In addition to a review of the marine amphiphilic siderophores, we report the production of petrobactin disulfonate by Marinobacter aquaeolei VT8.|Benzamides/*chemistry[MESH]|Magnetic Resonance Spectroscopy[MESH]|Marinobacter/*metabolism[MESH]|Molecular Structure[MESH]|Siderophores/*chemistry[MESH]|Spectrometry, Mass, Electrospray Ionization[MESH] |