Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases Leto TL; Morand S; Hurt D; Ueyama TAntioxid Redox Signal 2009[Oct]; 11 (10): 2607-19Nox family NADPH oxidases serve a variety of functions requiring reactive oxygen species (ROS) generation, including antimicrobial defense, biosynthetic processes, oxygen sensing, and redox-based cellular signaling. We explored targeting, assembly, and activation of several Nox family oxidases, since ROS production appears to be regulated both spatially and temporally. Nox1 and Nox3 are similar to the phagocytic (Nox2-based) oxidase, functioning as multicomponent superoxide-generating enzymes. Factors regulating their activities include cytosolic activator and organizer proteins and GTP-Rac. Their regulation varies, with the following rank order: Nox2 > Nox1 > Nox3. Determinants of subcellular targeting include: (a) formation of Nox-p22(phox) heterodimeric complexes allowing plasma membrane translocation, (b) phospholipids-binding specificities of PX domain-containing organizer proteins (p47(phox) or Nox organizer 1 (Noxo1 and p40(phox)), and (c) variably splicing of Noxo1 PX domains directing them to nuclear or plasma membranes. Dual oxidases (Duox1 and Duox2) are targeted by different mechanisms. Plasma membrane targeting results in H(2)O(2) release, not superoxide, to support extracellular peroxidases. Human Duox1 and Duox2 have no demonstrable peroxidase activity, despite their extensive homology with heme peroxidases. The dual oxidases were reconstituted by Duox activator 2 (Duoxa2) or two Duoxa1 variants, which dictate maturation, subcellular localization, and the type of ROS generated by forming stable complexes with Duox.|Amino Acid Sequence[MESH]|Animals[MESH]|Cell Line[MESH]|Enzyme Activation[MESH]|Humans[MESH]|Isoenzymes/chemistry/genetics/*metabolism[MESH]|Models, Molecular[MESH]|Molecular Sequence Data[MESH]|NADPH Oxidases/chemistry/genetics/*metabolism[MESH]|Phagocytosis/physiology[MESH]|Protein Conformation[MESH]|Protein Structure, Tertiary[MESH]|Reactive Oxygen Species/*metabolism[MESH]|Sequence Alignment[MESH]|Sequence Homology, Amino Acid[MESH] |