Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Oxidative stress and oxidative damage in carcinogenesis Klaunig JE; Kamendulis LM; Hocevar BAToxicol Pathol 2010[Jan]; 38 (1): 96-109Carcinogenesis is a multistep process involving mutation and the subsequent selective clonal expansion of the mutated cell. Chemical and physical agents including those that induce reative oxygen species can induce and/or modulate this multistep process. Several modes of action by which carcinogens induce cancer have been identified, including through production of reactive oxygen species (ROS). Oxidative damage to cellular macromolecules can arise through overproduction of ROS and faulty antioxidant and/or DNA repair mechanisms. In addition, ROS can stimulate signal transduction pathways and lead to activation of key transcription factors such as Nrf2 and NF-kappaB. The resultant altered gene expression patterns evoked by ROS contribute to the carcinogenesis process. Recent evidence demonstrates an association between a number of single nucleotide polymorphisms (SNPs) in oxidative DNA repair genes and antioxidant genes with human cancer susceptibility. These aspects of ROS biology will be discussed in the context of their relationship to carcinogenesis.|*DNA Damage[MESH]|*Oxidative Stress[MESH]|Animals[MESH]|DNA Repair[MESH]|Humans[MESH]|Hypoxia-Inducible Factor 1/physiology[MESH]|Liver Neoplasms, Experimental/etiology[MESH]|NF-E2-Related Factor 2/physiology[MESH]|Neoplasms/*etiology/genetics/metabolism[MESH]|Oxidation-Reduction[MESH]|Polymorphism, Genetic[MESH]|Reactive Oxygen Species/metabolism[MESH]|Transcription Factor AP-1/physiology[MESH] |