Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
l�ll The epigenetic landscape of mammary gland development and functional differentiation Rijnkels M; Kabotyanski E; Montazer-Torbati MB; Hue Beauvais C; Vassetzky Y; Rosen JM; Devinoy EJ Mammary Gland Biol Neoplasia 2010[Mar]; 15 (1): 85-100Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.|*Epigenesis, Genetic[MESH]|*Gene Expression Regulation, Neoplastic[MESH]|Animals[MESH]|Breast Neoplasms/genetics/physiopathology[MESH]|Cell Differentiation/physiology[MESH]|Chromatin Assembly and Disassembly/physiology[MESH]|Chromatin/metabolism[MESH]|Female[MESH]|Histones/metabolism[MESH]|Humans[MESH]|Mammary Glands, Animal/*growth & development/*physiology[MESH]|Mammary Glands, Human/*growth & development/*physiology[MESH]|RNA, Untranslated/metabolism[MESH]|Stem Cells/metabolism[MESH]|Transcription Factors/metabolism[MESH]|Transcription, Genetic[MESH] |