Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Transient receptor potential channel activation and endothelium-dependent dilation in the systemic circulation Zhang DX; Gutterman DDJ Cardiovasc Pharmacol 2011[Feb]; 57 (2): 133-9The endothelium plays a crucial role in the regulation of vascular tone by releasing a number of vasodilator mediators, including nitric oxide, prostacyclin, and endothelium-derived hyperpolarizing factor(s). The production of these mediators is typically initiated by an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) in endothelial cells. An essential component of this Ca(2+) signal is the entry of Ca(2+) from the extracellular space through plasma membrane Ca(2+)-permeable channels. Although the molecular identification of the potential Ca(2+) entry channel(s) responsible for the release of endothelial relaxing factors is still evolving, accumulating evidence indicates that the transient receptor potential (TRP) channels, a superfamily of Ca(2+)-permeable cation channels, serve as an important mechanism of Ca(2+) entry in endothelial cells and other nonexcitable cells. The activation of these channels has been implicated in diverse endothelial functions ranging from control of vascular tone and regulation of vascular permeability to angiogenesis and vascular remodeling. This review summarizes recent evidence concerning TRP channels and endothelium-dependent dilation in several systemic vascular beds. In particular, we highlight the emerging roles of several TRP channels from the canonical and vanilloid subfamilies, including TRPV4, TRPC4, and TRPC6, in vasodilatory responses to shear stress and receptor agonists and discuss potential signaling mechanisms linking the TRP channel activation and the initiation of endothelium-derived hyperpolarizing factor-mediated responses in endothelial cells.|Animals[MESH]|Blood Circulation/*physiology[MESH]|Blood Flow Velocity/physiology[MESH]|Endothelium, Vascular/*physiology[MESH]|Humans[MESH]|Transient Receptor Potential Channels/*metabolism[MESH]|Vasodilation/*physiology[MESH] |