Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Neuroprotection caused by hyperoxia preconditioning in animal stroke models Bigdeli MRScientificWorldJournal 2011[Feb]; 11 (ä): 403-21Ischemic tolerance induced by hyperoxia (HO) can protect against brain injury and neurodegenerative diseases. Although multiple studies demonstrate neuroprotection by HO, the exact mechanism(s) of HO neuroprotection has not been elucidated. Here, I first review related mechanisms of brain ischemia and then data evaluating the neuroprotective effects of HO in focal and global ischemic animal models. I clearly establish that the cerebrovascular, extracellular matrix, plasma membrane, endoplasmic reticulum, mitochondrial, and lysosomal reactions are critical in neuroprotection induced by HO in focal ischemia. In rats and mice, the middle cerebral artery occlusion (MCAO) model was used to represent cerebrovascular stroke. Neuroprotection induced by HO exhibits specific adaptation responses that involve a number of cellular and biochemical alterations, including metabolic homeostasis and reprogramming of gene expression. The changes in the metabolic pathways are generally short lived and reversible, while the consequences of gene expression are a long-term process and may lead to the permanent alteration in the pattern of gene expression. The neuroprotection provided by HO may have important clinical implications. Therefore, it is important to assess the benefits and risks of HO therapy in noninfarcted tissue.|Animals[MESH]|Disease Models, Animal[MESH]|Ischemic Preconditioning/*methods[MESH]|Mice[MESH]|Rats[MESH]|Stroke/*prevention & control[MESH] |