Warning: Undefined variable $zfal in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525
Deprecated: str_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 525

Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 530
free
Warning: Undefined variable $sterm in C:\Inetpub\vhosts\kidney.de\httpdocs\mlpefetch.php on line 531
free
free
  English Wikipedia
Nephropedia Template TP (
Twit Text
DeepDyve Pubget Overpricing |   
lüll Using highly detailed administrative data to predict pneumonia mortality Rothberg MB; Pekow PS; Priya A; Zilberberg MD; Belforti R; Skiest D; Lagu T; Higgins TL; Lindenauer PKPLoS One 2014[]; 9 (1): e87382BACKGROUND: Mortality prediction models generally require clinical data or are derived from information coded at discharge, limiting adjustment for presenting severity of illness in observational studies using administrative data. OBJECTIVES: To develop and validate a mortality prediction model using administrative data available in the first 2 hospital days. RESEARCH DESIGN: After dividing the dataset into derivation and validation sets, we created a hierarchical generalized linear mortality model that included patient demographics, comorbidities, medications, therapies, and diagnostic tests administered in the first 2 hospital days. We then applied the model to the validation set. SUBJECTS: Patients aged >/= 18 years admitted with pneumonia between July 2007 and June 2010 to 347 hospitals in Premier, Inc.'s Perspective database. MEASURES: In hospital mortality. RESULTS: The derivation cohort included 200,870 patients and the validation cohort had 50,037. Mortality was 7.2%. In the multivariable model, 3 demographic factors, 25 comorbidities, 41 medications, 7 diagnostic tests, and 9 treatments were associated with mortality. Factors that were most strongly associated with mortality included receipt of vasopressors, non-invasive ventilation, and bicarbonate. The model had a c-statistic of 0.85 in both cohorts. In the validation cohort, deciles of predicted risk ranged from 0.3% to 34.3% with observed risk over the same deciles from 0.1% to 33.7%. CONCLUSIONS: A mortality model based on detailed administrative data available in the first 2 hospital days had good discrimination and calibration. The model compares favorably to clinically based prediction models and may be useful in observational studies when clinical data are not available.|*Hospital Information Systems[MESH]|*Hospital Mortality[MESH]|*Models, Biological[MESH]|Adolescent[MESH]|Adult[MESH]|Aged[MESH]|Aged, 80 and over[MESH]|Female[MESH]|Humans[MESH]|Male[MESH]|Middle Aged[MESH]|Pneumonia/*mortality/therapy[MESH]|Retrospective Studies[MESH]|Risk Factors[MESH] |