Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1038/srep28746

http://scihub22266oqcxt.onion/10.1038/srep28746
suck pdf from google scholar
C4921841!4921841!27345755
unlimited free pdf from europmc27345755    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\27345755.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117
pmid27345755      Sci+Rep 2016 ; 6 (ä): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Enhanced four-wave mixing with nonlinear plasmonic metasurfaces #MMPMID27345755
  • Jin B; Argyropoulos C
  • Sci Rep 2016[]; 6 (ä): ä PMID27345755show ga
  • Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.
  • ä


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box