Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\29576758.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Nat+Comput 2018 ; 17 (1): 131-45 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Programming discrete distributions with chemical reaction networks #MMPMID29576758
Cardelli L; Kwiatkowska M; Laurenti L
Nat Comput 2018[]; 17 (1): 131-45 PMID29576758show ga
We explore the range of probabilistic behaviours that can be engineered with Chemical Reaction Networks (CRNs). We give methods to ?program? CRNs so that their steady state is chosen from some desired target distribution that has finite support in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {N}}^m$$\end{document}Nm, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 1$$\end{document}m?1. Moreover, any distribution with countable infinite support can be approximated with arbitrarily small error under the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}L1 norm. We also give optimized schemes for special distributions, including the uniform distribution. Finally, we formulate a calculus to compute on distributions that is complete for finite support distributions, and can be compiled to a restricted class of CRNs that at steady state realize those distributions.