Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=12529271&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\12529271.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Am+J+Physiol+Renal+Physiol 2003 ; 284 (2): F253-66 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Physiology of the renal medullary microcirculation #MMPMID12529271
Pallone TL; Zhang Z; Rhinehart K
Am J Physiol Renal Physiol 2003[Feb]; 284 (2): F253-66 PMID12529271show ga
Perfusion of the renal medulla plays an important role in salt and water balance. Pericytes are smooth muscle-like cells that impart contractile function to descending vasa recta (DVR), the arteriolar segments that supply the medulla with blood flow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl(-) conductance that secondarily gates voltage-activated Ca(2+) entry. In this respect, DVR may differ from other parts of the efferent microcirculation of the kidney. Elevation of extracellular K(+) constricts DVR to a lesser degree than ANG II or endothelin-1, implying that other events, in addition to membrane depolarization, are needed to maximize vasoconstriction. DVR endothelial cytoplasmic Ca(2+) is increased by bradykinin, a response that is inhibited by ANG II. ANG II inhibition of endothelial Ca(2+) signaling might serve to regulate the site of origin of vasodilatory paracrine agents generated in the vicinity of outer medullary vascular bundles. In the hydropenic kidney, DVR plasma equilibrates with the interstitium both by diffusion and through water efflux across aquaporin-1. That process is predicted to optimize urinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta have physiological mechanisms specific to their role in the renal medulla.