Deprecated: Implicit conversion from float 235.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\15710759.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Circulation 2005 ; 111 (7): 871-8 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Hyperparathyroidism and the calcium paradox of aldosteronism #MMPMID15710759
Chhokar VS; Sun Y; Bhattacharya SK; Ahokas RA; Myers LK; Xing Z; Smith RA; Gerling IC; Weber KT
Circulation 2005[Feb]; 111 (7): 871-8 PMID15710759show ga
BACKGROUND: Aldosteronism may account for oxi/nitrosative stress, a proinflammatory phenotype, and wasting in congestive heart failure. We hypothesized that aldosterone/1% NaCl treatment (ALDOST) in rats enhances Ca2+ and Mg2+ excretion and leads to systemic effects, including bone loss. METHODS AND RESULTS: At 1, 2, 4, and 6 weeks of ALDOST, we monitored Ca2+ and Mg2+ excretion, ionized [Ca2+]o and [Mg2+]o, parathyroid hormone and 1-antiproteinase activity in plasma, bone mineral density, bone strength, Ca2+ and Mg2+ content in peripheral blood mononuclear cells (PBMCs) and ventricular tissue, and lymphocyte H2O2 production. A separate group received spironolactone (Spiro), an aldosterone receptor antagonist. Age- and gender-matched unoperated and untreated rats served as controls. ALDOST induced a marked (P<0.05) and persistent rise in urinary and fecal Ca2+ and Mg2+ excretion, a progressive reduction (P<0.05) in [Ca2+]o and [Mg2+]o, and an elevation in parathyroid hormone (P<0.05) with a fall (P<0.05) in bone mineral density and strength. An early, sustained increase (P<0.05) in PBMC Ca2+ and Mg2+ was found, together with an increase (P<0.05) in tissue Ca2+. Plasma 1-antiproteinase activity was reduced (P<0.05), whereas lymphocyte H2O2 production was increased (P<0.05) at all time points. Spiro cotreatment attenuated (P<0.05) urinary and fecal Ca2+ and Mg2+ excretion, prevented the fall in [Ca2+]o and [Mg2+]o, rescued bone mineral density and strength, and prevented Ca2+ overloading of PBMCs and cardiomyocytes. CONCLUSIONS: In aldosteronism, Ca2+ and Mg2+ losses lead to a fall in [Ca2+]o and [Mg2+]o with secondary hyperparathyroidism and bone resorption. Ca2+ overloading of PBMCs and cardiac tissue leads to oxi/nitrosative stress and a proinflammatory phenotype.