Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\18799719.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 J+Am+Soc+Nephrol 2009 ; 20 (2): 239-44 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Roles of angiopoietins in kidney development and disease #MMPMID18799719
Woolf AS; Gnudi L; Long DA
J Am Soc Nephrol 2009[Feb]; 20 (2): 239-44 PMID18799719show ga
Angiopoietins are a family of growth factors, the best studied being angiopoietin 1 (Ang-1), which binds to and tyrosine-phosphorylates endothelial Tie-2, causing enhanced survival and cell-cell stabilization. Ang-2 and Tie-1 downregulate Ang-1-induced Tie-2 signaling, and angiopoietin actions are further modified by vascular endothelial growth factor A and integrins. Metanephric capillaries express Tie genes, whereas metanephric mesenchyme, maturing tubules, and mature podocytes express Ang-1. Ang-1 null embryos begin to form blood vessels, but subsequent vascular remodeling fails, and analyses of chimeric wild-type/Tie null mutant embryos show that Tie genes are needed for renal endothelial survival. Ang-2 is transiently expressed in renal arterial smooth muscle and mesangial cells, and tubules around adult vasa rectae express Ang-2. Ang-2 null mice have increased pericytes around kidney cortical peritubular capillaries, perhaps an indirect consequence of upregulated Tie-2 signaling. Ang-1 therapies attenuate peritubular capillary loss in adult models of tubulointerstitial disease, although, in one study, this was accompanied by enhanced inflammation and fibrosis. Podocyte-directed Ang-2 transgenic overexpression causes glomerular endothelial apoptosis, downregulated nephrin expression, and increased albuminuria, and glomerular Ang-2 is upregulated in hyperglycemic and immune-mediated glomerulopathies. Thus, angiopoietins affect podocyte as well as glomerular endothelial biology, and imbalanced angiopoietin signaling contributes to glomerular pathobiology.