Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26076181&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\26076181.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Br+J+Pharmacol 2015 ; 172 (17): 4380-90 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Pleiotropic, heart rate-independent cardioprotection by ivabradine #MMPMID26076181
Br J Pharmacol 2015[Sep]; 172 (17): 4380-90 PMID26076181show ga
BACKGROUND AND PURPOSE: In pigs, ivabradine reduces infarct size even when given only at reperfusion and in the absence of heart rate reduction. The mechanism of this non-heart rate-related cardioprotection is unknown. Hence, in the present study we assessed the pleiotropic action of ivabradine in more detail. EXPERIMENTAL APPROACH: Anaesthetized mice were pretreated with ivabradine (1.7 mg . kg(-1) i.v.) or placebo (control) before a cycle of coronary occlusion/reperfusion (30/120 min +/- left atrial pacing). Infarct size was determined. Isolated ventricular cardiomyocytes were exposed to simulated ischaemia/reperfusion (60/5 min) in the absence and presence of ivabradine, viability was then quantified and intra- and extracellular reactive oxygen species (ROS) formation was detected. Mitochondria were isolated from mouse hearts and exposed to simulated ischaemia/reperfusion (6/3 min) in glutamate/malate- and ADP-containing buffer in the absence and presence of ivabradine respectively. Mitochondrial respiration, extramitochondrial ROS, mitochondrial ATP production and calcium retention capacity (CRC) were assessed. KEY RESULTS: Ivabradine decreased infarct size even with atrial pacing. Cardiomyocyte viability after simulated ischaemia/reperfusion was better preserved with ivabradine, the accumulation of intra- and extracellular ROS decreased in parallel. Mitochondrial complex I respiration was not different without/with ivabradine, but ivabradine significantly inhibited the accumulation of extramitochondrial ROS, increased mitochondrial ATP production and increased CRC. CONCLUSION AND IMPLICATIONS: Ivabradine reduces infarct size independently of a reduction in heart rate and improves ventricular cardiomyocyte viability, possibly by reducing mitochondrial ROS formation, increasing ATP production and CRC.