Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 245.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\33845269.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Comput+Biol+Med 2021 ; 133 (ä): 104354 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Leveraging machine learning to characterize the role of socio-economic determinants on physical health and well-being among veterans #MMPMID33845269
Makridis CA; Zhao DY; Bejan CA; Alterovitz G
Comput Biol Med 2021[Jun]; 133 (ä): 104354 PMID33845269show ga
INTRODUCTION: We investigate the contribution of demographic, socio-economic, and geographic characteristics as determinants of physical health and well-being to guide public health policies and preventative behavior interventions (e.g., countering coronavirus). METHODS: We use machine learning to build predictive models of overall well-being and physical health among veterans as a function of these three sets of characteristics. We link Gallup's U.S. Daily Poll between 2014 and 2017 over a range of demographic and socio-economic characteristics with zipcode characteristics from the Census Bureau to build predictive models of overall and physical well-being. RESULTS: Although the predictive models of overall well-being have weak performance, our classification of low levels of physical well-being performed better. Gradient boosting delivered the best results (80.2% precision, 82.4% recall, and 80.4% AUROC) with perceptions of purpose in the workplace and financial anxiety as the most predictive features. Our results suggest that additional measures of socio-economic characteristics are required to better predict physical well-being, particularly among vulnerable groups, like veterans. CONCLUSION: Socio-economic characteristics explain large differences in physical and overall well-being. Effective predictive models that incorporate socio-economic data will provide opportunities to create real-time and personalized feedback to help individuals improve their quality of life.