Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.2196/54621

http://scihub22266oqcxt.onion/10.2196/54621
suck pdf from google scholar
39231425!11411223!39231425
unlimited free pdf from europmc39231425    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid39231425      J+Med+Internet+Res 2024 ; 26 (ä): e54621
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Enhancing Patient Selection in Sepsis Clinical Trials Design Through an AI Enrichment Strategy: Algorithm Development and Validation #MMPMID39231425
  • Yang M; Zhuang J; Hu W; Li J; Wang Y; Zhang Z; Liu C; Chen H
  • J Med Internet Res 2024[Sep]; 26 (ä): e54621 PMID39231425show ga
  • BACKGROUND: Sepsis is a heterogeneous syndrome, and enrollment of more homogeneous patients is essential to improve the efficiency of clinical trials. Artificial intelligence (AI) has facilitated the identification of homogeneous subgroups, but how to estimate the uncertainty of the model outputs when applying AI to clinical decision-making remains unknown. OBJECTIVE: We aimed to design an AI-based model for purposeful patient enrollment, ensuring that a patient with sepsis recruited into a trial would still be persistently ill by the time the proposed therapy could impact patient outcome. We also expected that the model could provide interpretable factors and estimate the uncertainty of the model outputs at a customized confidence level. METHODS: In this retrospective study, 9135 patients with sepsis requiring vasopressor treatment within 24 hours after sepsis onset were enrolled from Beth Israel Deaconess Medical Center. This cohort was used for model development, and 10-fold cross-validation with 50 repeats was used for internal validation. In total, 3743 patients with sepsis from the eICU Collaborative Research Database were used as the external validation cohort. All included patients with sepsis were stratified based on disease progression trajectories: rapid death, recovery, and persistent ill. A total of 148 variables were selected for predicting the 3 trajectories. Four machine learning algorithms with 3 different setups were used. We estimated the uncertainty of the model outputs using conformal prediction (CP). The Shapley Additive Explanations method was used to explain the model. RESULTS: The multiclass gradient boosting machine was identified as the best-performing model with good discrimination and calibration performance in both validation cohorts. The mean area under the receiver operating characteristic curve with SD was 0.906 (0.018) for rapid death, 0.843 (0.008) for recovery, and 0.807 (0.010) for persistent ill in the internal validation cohort. In the external validation cohort, the mean area under the receiver operating characteristic curve (SD) was 0.878 (0.003) for rapid death, 0.764 (0.008) for recovery, and 0.696 (0.007) for persistent ill. The maximum norepinephrine equivalence, total urine output, Acute Physiology Score III, mean systolic blood pressure, and the coefficient of variation of oxygen saturation contributed the most. Compared to the model without CP, using the model with CP at a mixed confidence approach reduced overall prediction errors by 27.6% (n=62) and 30.7% (n=412) in the internal and external validation cohorts, respectively, as well as enabled the identification of more potentially persistent ill patients. CONCLUSIONS: The implementation of our model has the potential to reduce heterogeneity and enroll more homogeneous patients in sepsis clinical trials. The use of CP for estimating the uncertainty of the model outputs allows for a more comprehensive understanding of the model's reliability and assists in making informed decisions based on the predicted outcomes.
  • |*Algorithms[MESH]
  • |*Artificial Intelligence[MESH]
  • |*Patient Selection[MESH]
  • |*Sepsis/therapy[MESH]
  • |Aged[MESH]
  • |Clinical Trials as Topic/methods[MESH]
  • |Female[MESH]
  • |Humans[MESH]
  • |Male[MESH]
  • |Middle Aged[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box