Use my Search Websuite to scan PubMed, PMCentral, Journal Hosts and Journal Archives, FullText.
Kick-your-searchterm to multiple Engines kick-your-query now !>
A dictionary by aggregated review articles of nephrology, medicine and the life sciences
Your one-stop-run pathway from word to the immediate pdf of peer-reviewed on-topic knowledge.

suck abstract from ncbi


10.1136/jitc-2024-009348

http://scihub22266oqcxt.onion/10.1136/jitc-2024-009348
suck pdf from google scholar
39231545!11409329!39231545
unlimited free pdf from europmc39231545    free
PDF from PMC    free
html from PMC    free

suck abstract from ncbi


Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 298.79999999999995 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 298.79999999999995 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 298.79999999999995 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534

Deprecated: Implicit conversion from float 298.79999999999995 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
pmid39231545      J+Immunother+Cancer 2024 ; 12 (9): ä
Nephropedia Template TP

gab.com Text

Twit Text FOAVip

Twit Text #

English Wikipedia


  • Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study #MMPMID39231545
  • Ye G; Wu G; Qi Y; Li K; Wang M; Zhang C; Li F; Wee L; Dekker A; Han C; Liu Z; Liao Y; Shi Z
  • J Immunother Cancer 2024[Sep]; 12 (9): ä PMID39231545show ga
  • OBJECTIVES: Although neoadjuvant immunochemotherapy has been widely applied in non-small cell lung cancer (NSCLC), predicting treatment response remains a challenge. We used pretreatment multimodal CT to explore deep learning-based immunochemotherapy response image biomarkers. METHODS: This study retrospectively obtained non-contrast enhanced and contrast enhancedbubu CT scans of patients with NSCLC who underwent surgery after receiving neoadjuvant immunochemotherapy at multiple centers between August 2019 and February 2023. Deep learning features were extracted from both non-contrast enhanced and contrast enhanced CT scans to construct the predictive models (LUNAI-uCT model and LUNAI-eCT model), respectively. After the feature fusion of these two types of features, a fused model (LUNAI-fCT model) was constructed. The performance of the model was evaluated using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. SHapley Additive exPlanations analysis was used to quantify the impact of CT imaging features on model prediction. To gain insights into how our model makes predictions, we employed Gradient-weighted Class Activation Mapping to generate saliency heatmaps. RESULTS: The training and validation datasets included 113 patients from Center A at the 8:2 ratio, and the test dataset included 112 patients (Center B n=73, Center C n=20, Center D n=19). In the test dataset, the LUNAI-uCT, LUNAI-eCT, and LUNAI-fCT models achieved AUCs of 0.762 (95% CI 0.654 to 0.791), 0.797 (95% CI 0.724 to 0.844), and 0.866 (95% CI 0.821 to 0.883), respectively. CONCLUSIONS: By extracting deep learning features from contrast enhanced and non-contrast enhanced CT, we constructed the LUNAI-fCT model as an imaging biomarker, which can non-invasively predict pathological complete response in neoadjuvant immunochemotherapy for NSCLC.
  • |*Carcinoma, Non-Small-Cell Lung/drug therapy/diagnostic imaging/pathology[MESH]
  • |*Deep Learning[MESH]
  • |*Lung Neoplasms/drug therapy/diagnostic imaging/pathology[MESH]
  • |*Neoadjuvant Therapy/methods[MESH]
  • |*Tomography, X-Ray Computed/methods[MESH]
  • |Aged[MESH]
  • |Female[MESH]
  • |Humans[MESH]
  • |Immunotherapy/methods[MESH]
  • |Male[MESH]
  • |Middle Aged[MESH]
  • |Multimodal Imaging/methods[MESH]


  • DeepDyve
  • Pubget Overpricing
  • suck abstract from ncbi

    Linkout box