Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 209.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\7505654.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 EXS 1993 ; 66 (ä): 225-45 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Poorly selective cation channels in apical membranes of epithelia #MMPMID7505654
Van Driessche W; Desmedt L; De Smet P; Simaels J
EXS 1993[]; 66 (ä): 225-45 PMID7505654show ga
The apical membrane of frog skin contains two types of pathways which allow the passage of several monovalent cations in the absence of external Ca2+. Differences between the two pathways concern their open-close kinetics, selectivity, and the affinity for several blocking agents. Type S channels open and close relatively slowly, whereas type F channels display fast open-close kinetics. Both channel types allow the passage of Na+, K+, and Rb+ currents which are blocked by divalent cations and La3+ added to the extracellular side. Type F channels are permeable for Cs+ which is, however, excluded from type S channels. Shifts in open-close kinetics induced by Mg2+ occur at concentrations below 5 microM for type F channels, whereas more than a tenfold higher dose is required for the type S pathway. UO2(2+) concentrations up to 100 microM only occlude type S channels while 100 microM tetracaine selectively blocks type F channels. Apical membranes of toad urinary bladder, cultured amphibian renal epithelia (A6), and toad colon contain only type F channels. In toad bladder and A6 cells volume expansion strongly activates this pathway. Macroscopic currents carried by Ba2+ and Ca2+ could be recorded after activation of toad bladders with oxytocin and treatment of the apical surface with nanomolar concentrations of Ag+, which seems to interact with a site located at the channel interior.