Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 231.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 265.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\23616621.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Circ+Res 2013 ; 113 (1): 72-7 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Macrophage-Derived Matrix Vesicles: An Alternative Novel Mechanism for Microcalcification in Atherosclerotic Plaques #MMPMID23616621
New SE; Goettsch C; Aikawa M; Marchini JF; Shibasaki M; Yabusaki K; Libby P; Shanahan CM; Croce K; Aikawa E
Circ Res 2013[Jun]; 113 (1): 72-7 PMID23616621show ga
Rationale: We previously showed that early calcification of atherosclerotic plaques associates with macrophage accumulation. Chronic renal disease (CRD) and mineral imbalance accelerates calcification and the subsequent release of matrix vesicles (MVs) ? precursors of microcalcification. Objective: We tested the hypothesis that macrophage-derived MVs contribute directly to microcalcification. Methods and Results: Macrophages associated with regions of calcified vesicular structures in human carotid plaques (n=136 patients). In vitro, macrophages released MVs with high calcification and aggregation potential. MVs expressed exosomal markers (CD9 and TSG101), and contained S100A9 and annexin V (Anx5). Silencing S100A9 in vitro and genetic deficiency in S100A9?/? mice reduced MV calcification, while stimulation with S100A9 increased calcification potential. Externalization of phosphatidylserine (PS) after Ca/P stimulation and interaction of S100A9 and Anx5, indicated that a PS-Anx5-S100A9 membrane complex facilitates hydroxyapatite nucleation within the macrophage-derived MV membrane. Conclusions: Our results support the novel concept that macrophages release calcifying MVs enriched in S100A9 and Anx5, which contribute to accelerated microcalcification in CRD.