Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=26472144&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\26472144.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Sci+Rep 2015 ; 5 (ä): ä Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors #MMPMID26472144
Fan LZ; Chen TT; Song WL; Li X; Zhang S
Sci Rep 2015[]; 5 (ä): ä PMID26472144show ga
Supercapacitors fabricated by 3D porous carbon frameworks, such as graphene- and carbon nanotube (CNT)-based aerogels, have been highly attractive due to their various advantages. However, their high cost along with insufficient yield has inhibited their large-scale applications. Here we have demonstrated a facile and easily scalable approach for large-scale preparing novel 3D nitrogen-containing porous carbon frameworks using ultralow-cost commercial cotton. Electrochemical performance suggests that the optimal nitrogen-containing cotton-derived carbon frameworks with a high nitrogen content (12.1?mol%) along with low surface area 285?m2 g?1 present high specific capacities of the 308 and 200?F g?1 in KOH electrolyte at current densities of 0.1 and 10?A g?1, respectively, with very limited capacitance loss upon 10,000 cycles in both aqueous and gel electrolytes. Moreover, the electrode exhibits the highest capacitance up to 220?F g?1 at 0.1?A g?1 and excellent flexibility (with negligible capacitance loss under different bending angles) in the polyvinyl alcohol/KOH gel electrolyte. The observed excellent performance competes well with that found in the electrodes of similar 3D frameworks formed by graphene or CNTs. Therefore, the ultralow-cost and simply strategy here demonstrates great potential for scalable producing high-performance carbon-based supercapacitors in the industry.