Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 213.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 247.2 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\26516850.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Int+J+Mol+Sci 2015 ; 16 (10): 25865-80 Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Aminolevulinic Acid-Based Tumor Detection and Therapy: Molecular Mechanisms and Strategies for Enhancement #MMPMID26516850
Yang X; Palasuberniam P; Kraus D; Chen B
Int J Mol Sci 2015[Oct]; 16 (10): 25865-80 PMID26516850show ga
Aminolevulinic acid (ALA) is the first metabolite in the heme biosynthesis pathway in humans. In addition to the end product heme, this pathway also produces other porphyrin metabolites. Protoporphyrin (PpIX) is one heme precursor porphyrin with good fluorescence and photosensitizing activity. Because tumors and other proliferating cells tend to exhibit a higher level of PpIX than normal cells after ALA incubation, ALA has been used as a prodrug to enable PpIX fluorescence detection and photodynamic therapy (PDT) of lesion tissues. Extensive studies have been carried out in the past twenty years to explore why some tumors exhibit elevated ALA-mediated PpIX and how to enhance PpIX levels to achieve better tumor detection and treatment. Here we would like to summarize previous research in order to stimulate future studies on these important topics. In this review, we focus on summarizing tumor-associated alterations in heme biosynthesis enzymes, mitochondrial functions and porphyrin transporters that contribute to ALA-PpIX increase in tumors. Mechanism-based therapeutic strategies for enhancing ALA-based modalities including iron chelators, differentiation agents and PpIX transporter inhibitors are also discussed.