Warning: file_get_contents(https://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=29391410&cmd=llinks): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 215
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Deprecated: Implicit conversion from float 211.6 to int loses precision in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 534
Warning: imagejpeg(C:\Inetpub\vhosts\kidney.de\httpdocs\phplern\29391410.jpg): Failed to open stream: No such file or directory in C:\Inetpub\vhosts\kidney.de\httpdocs\pget.php on line 117 Sci+Rep 2018 ; 8 (ä): ä Nephropedia Template TP
gab.com Text
Twit Text FOAVip
Twit Text #
English Wikipedia
Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation #MMPMID29391410
ter Braake AD; Tinnemans PT; Shanahan CM; Hoenderop JGJ; de Baaij JHF
Sci Rep 2018[]; 8 (ä): ä PMID29391410show ga
Magnesium has been shown to effectively prevent vascular calcification associated with chronic kidney disease. Magnesium has been hypothesized to prevent the upregulation of osteoblastic genes that potentially drives calcification. However, extracellular effects of magnesium on hydroxyapatite formation are largely neglected. This study investigated the effects of magnesium on intracellular changes associated with transdifferentiation and extracellular crystal formation. Bovine vascular smooth muscle cells were calcified using ?-glycerophosphate. Transcriptional analysis, alkaline phosphatase activity and detection of apoptosis were used to identify transdifferentiation. Using X-ray diffraction and energy dispersive spectroscopy extracellular crystal composition was investigated. Magnesium prevented calcification in vascular smooth muscle cells. ?-glycerophosphate increased expression of osteopontin but no other genes related to calcification. Alkaline phosphatase activity was stable and apoptosis was only detected after calcification independent of magnesium. Blocking of the magnesium channel TRPM7 using 2-APB did not abrogate the protective effects of magnesium. Magnesium prevented the formation of hydroxyapatite, which formed extensively during ?-glycerophosphate treatment. Magnesium reduced calcium and phosphate fractions of 68% and 41% extracellular crystals, respectively, without affecting the fraction of magnesium. This study demonstrates that magnesium inhibits hydroxyapatite formation in the extracellular space, thereby preventing calcification of vascular smooth muscle cells.